言語 : 日本語

日本語

  • 超音波ワイヤボンディングの仕組みと用途 Jul 17 , 2023
    超音波ワイヤボンディングの仕組みと用途 超音波ワイヤボンディングとは 超音波ワイヤボンディングまたは超音波ワイヤ溶接は、超音波振動を使用してプラスチック、金属、または異種材料を接合する工業用溶接プロセスです。溶接中、接合された材料は通常、固定具 (またはアンビル) とソノトロード (振動する金属ツール) によって一緒に保持されます。 ソノトロードが接合対象の表面に機械的振動を加えると、その結果生じる摩擦により熱が発生します。この熱は通常、0.1 ~ 1 秒以内に材料を接合します。 超音波ワイヤボンディングは、材料の融点以下で溶接が行われるため、ソリッドステート溶接プロセスであると言われています。これは、高温により望ましくない特性が生じる可能性がある金属接合用途では特に重要です。 超音波溶接システムの仕組み 超音波ワイヤボンディングは、入ってくる電流を高周波の超音波信号に変換する小さなボック...
    続きを読む
  • 18650電池は何でできていますか? Jul 20 , 2023
    18650電池は何でできていますか? 18650 バッテリーは特定のタイプのリチウムイオンバッテリーで、直径 18 mm、長さ 65 mm という寸法にちなんで名付けられました。これらのバッテリーは、ラップトップ、電動工具、懐中電灯、電気自動車など、さまざまな用途に広く使用されています。18650 バッテリーの主なコンポーネントは次のとおりです。 カソード:カソードは通常、コバルト酸化リチウム (LiCoO2)、マンガン酸化リチウム (LiMn2O4)、リン酸鉄リチウム (LiFePO4)、またはその他のリチウムベースの化合物でできています。正極材料の選択は、電池の性能、容量、安全性に影響します。 アノード:アノードは通常グラファイトでできており、充電中にリチウムイオンを貯蔵し、放電中にリチウムイオンを放出できます。 セパレーター:セパレーターは、カソードとアノードが直接接触しないようにす...
    続きを読む
  • リチウム電池パックの製造工程はどのようなものですか? Aug 02 , 2023
    What is the process in the manufacturing of lithium battery pack? 1. Paste barley paper on the positive electrode of the battery cell リチウム電池はエネルギー密度が高く広く普及していますが、リチウム電池の製造コストは決して安くないため、電池の製造コストを下げるには製品の歩留まりを向上させることが有効な手段となります。リチウム電池の製造プロセスでは、製品の歩留まりを向上させるために複数のプロセスを追加できます。その中で、リチウム電池の正極と負極の間の電極には絶縁紙が貼り付けられており、電極を電池タブに溶接する際の溶接ヘッドを効果的に減らすことができます。溶接ミスによるバッテリーの内部ショート。 大麦紙を貼る方法は大きく分けて2種類あります。 方法1:手動シール...
    続きを読む
  • 角形リチウム電池のレーザー溶接プロセス Oct 31 , 2023
     角形リチウム電池のレーザー溶接プロセス 角形アルミニウムシェルリチウム電池の製造および組み立てプロセスでは 、バッテリーセルとカバープレートのソフト接続の溶接、カバープレートのシーリング溶接、シーリングネイル溶接など、多数のレーザー溶接プロセスが必要です。レーザー溶接角形電源電池の主な溶接方法です。レーザー溶接は、その高いエネルギー密度、良好な電力安定性、高い溶接精度、容易なシステム統合、およびその他の多くの利点により、角形アルミニウムシェルリチウム電池の製造プロセスにおいてかけがえのないものとなっています。Acey は、オプションとしてファイバー レーザー発生器を備えた 1000 ~ 6000 W 自動 CNC レーザー溶接機を提供し、OEM &ODM サービスも受け入れます。 リチウムイオン電池の製造工程を詳しく解説: リチウム電池の構造は、正極、負極、セ...
    続きを読む
  • リチウム電池管理システム (BMS) の目的は何ですか? Dec 06 , 2023
    リチウム電池管理システム (BMS) の目的は何ですか? リチウムイオン電池の電池管理システムには、次の 3 つの重要な機能があります。1. SOC を正確に推定する:パワー リチウム バッテリー パックの充電状態 (SOC)、つまり残りの電力を正確に推定し、SOC が適切な範囲内に維持されるようにし、二次電池によるリチウム イオン バッテリーの損傷を防ぎます。過充電または過放電を監視し、いつでもバッテリーの残量を表示します。2. ダイナミックモニタリング:リチウムイオン電池の充電および放電プロセス中に、バッテリーパック内の各バッテリーの電圧と温度、充放電電流、およびバッテリーパックの総電圧がリアルタイムで収集され、バッテリーパックの充電と放電を防止します。バッテリーの過充電または過放電。同時に、電池の状態をタイムリーに反映し、問題のある電池を選択し、リチウムイオン電池の一連の動作の信頼性...
    続きを読む
  • パワーリチウムイオン電池の溶接方法とプロセスの紹介 Feb 27 , 2024
    パワーリチウムイオン電池の溶接方法とプロセスの紹介 動力用リチウム電池の製造プロセスにおける溶接方法とプロセスの合理的な選択は、電池のコスト、品質、安全性、一貫性に直接影響します。 1. レーザー溶接の原理 ファイバーレーザー溶接機は、レーザー光の優れた指向性と高い出力密度を利用して溶接を行います。レーザービームは光学システムを通じて狭い領域に集束され、非常に短時間で溶接領域に高濃度の熱源が形成されます。溶接対象物が溶けて強固な溶接点と溶接シームを形成します。 2. レーザー溶接タイプ 熱伝導溶接と深溶け込み溶接 レーザー熱伝導溶接の場合はレーザーパワー密度105~106w/㎝²、レーザー深溶け込み溶接の場合はレーザーパワー密度105~106w/ ㎝²です。 貫通溶接とシーム溶接 貫通溶接のため接続部に打ち抜き加工が不要で、加工が比較的簡単です。貫通溶接には、より強力なレーザー溶接機が必要...
    続きを読む
1 ... 12 13 14

の合計 14 ページ

伝言を残す
伝言を残す
もし 当社の製品に興味があり、詳細を知りたい場合は、ここにメッセージを残してください。 できる限りすぐに返信します。

ホーム

製品

連絡先