-
動力用リチウムイオン電池のアルミニウムシェルのレーザー溶接プロセス
Jun 21 , 2023
動力用リチウムイオン電池のアルミニウムシェルのレーザー溶接プロセス 電気自動車は、排出ガスを削減し、ゼロエミッションを達成できるため、当初 から好まれてきました。電気自動車は動力用リチウムイオン電池に依存しており、動力用リチウムイオン電池は通常 3003 アルミニウム合金で作られています。アルミニウム電池は内部電極材料を保護し、電解液の漏れを防ぐために溶接されています。しかし、従来の溶接パッケージング方法はもはや動力電池の急速な発展のニーズを満たすことができず、レーザー溶接技術は動力電池のアルミニウムケースに優れた適応性を持っています。 レーザー溶接側面溶接と上部溶接に分けられます。側面溶接の大きな利点は、電池内部への影響が少なく、電池ケース内部にスパッタが入りにくいことです。 溶接中にバンプが発生する可能性があり、後続のプロセスの組み立てにわずかな影響を与えるため、側面溶接プロセスにはレ...
続きを読む
-
レーザー溶接機はどのくらいの厚さの金属を溶接できますか?
Jun 27 , 2023
レーザー溶接機はどのくらいの厚さの金属を溶接できますか? レーザー溶接機が効果的に溶接できる金属の厚さは、使用するレーザーの種類、出力、ビーム品質、溶接される材料の特定の特性など、いくつかの要因によって異なります。一般に、レーザー溶接は、薄いシートから厚い部分まで、幅広い金属の厚さに適しています。 ファイバー レーザーや CO2 レーザーなどの高出力産業用レーザーの場合、数ミリメートルから数ミリメートル、さらにはセンチメートルの範囲の金属の厚さを溶接できます。ただし、材料の厚さが厚くなると、溶接プロセスがより困難になることに注意することが重要です。 通常、材料が厚いと、十分な浸透と適切な溶接の形成を達成するために、より高いレーザー出力が必要になります。場合によっては、マルチパス溶接、またはレーザー溶接と他の溶接技術の組み合わせを使用して、より厚い材料で満足のいく結果を得ることができます。 ...
続きを読む
-
レーザー溶接機のデメリットは何ですか?
Jul 04 , 2023
レーザー溶接機のデメリットは何ですか? レーザー溶接機には、精度、速度、多用途性の点でいくつかの利点があります。ただし、考慮すべきいくつかの欠点もあります。 コスト:レーザー溶接機は、従来の溶接方法と比較して、購入とメンテナンスに費用がかかる場合があります。特に高性能または産業グレードの機械の場合、初期投資と継続的なメンテナンスのコストが高くなる場合があります。 安全上の考慮事項:レーザーを扱う場合は、慎重な安全対策が必要です。溶接用途で一般的に使用されるクラス 4 レーザー システムは、適切な予防措置に従わない場合、目や皮膚に損傷を与える危険があります。オペレータは適切な安全訓練を受け、保護具を使用する必要があります。 物質的な制限:レーザー溶接はすべての材料に適しているわけではありません。アルミニウムや銅などの反射率の高い金属などの一部の材料は、熱伝導率が高いため、レーザーを使用して溶...
続きを読む
-
超音波ワイヤボンディングの仕組みと用途
Jul 17 , 2023
超音波ワイヤボンディングの仕組みと用途 超音波ワイヤボンディングとは 超音波ワイヤボンディングまたは超音波ワイヤ溶接は、超音波振動を使用してプラスチック、金属、または異種材料を接合する工業用溶接プロセスです。溶接中、接合された材料は通常、固定具 (またはアンビル) とソノトロード (振動する金属ツール) によって一緒に保持されます。 ソノトロードが接合対象の表面に機械的振動を加えると、その結果生じる摩擦により熱が発生します。この熱は通常、0.1 ~ 1 秒以内に材料を接合します。 超音波ワイヤボンディングは、材料の融点以下で溶接が行われるため、ソリッドステート溶接プロセスであると言われています。これは、高温により望ましくない特性が生じる可能性がある金属接合用途では特に重要です。 超音波溶接システムの仕組み 超音波ワイヤボンディングは、入ってくる電流を高周波の超音波信号に変換する小さなボック...
続きを読む
-
角形リチウム電池のレーザー溶接プロセス
Oct 31 , 2023
角形リチウム電池のレーザー溶接プロセス 角形アルミニウムシェルリチウム電池の製造および組み立てプロセスでは 、バッテリーセルとカバープレートのソフト接続の溶接、カバープレートのシーリング溶接、シーリングネイル溶接など、多数のレーザー溶接プロセスが必要です。レーザー溶接角形電源電池の主な溶接方法です。レーザー溶接は、その高いエネルギー密度、良好な電力安定性、高い溶接精度、容易なシステム統合、およびその他の多くの利点により、角形アルミニウムシェルリチウム電池の製造プロセスにおいてかけがえのないものとなっています。Acey は、オプションとしてファイバー レーザー発生器を備えた 1000 ~ 6000 W 自動 CNC レーザー溶接機を提供し、OEM &ODM サービスも受け入れます。 リチウムイオン電池の製造工程を詳しく解説: リチウム電池の構造は、正極、負極、セ...
続きを読む
-
パワーリチウムイオン電池の溶接方法とプロセスの紹介
Feb 27 , 2024
パワーリチウムイオン電池の溶接方法とプロセスの紹介 動力用リチウム電池の製造プロセスにおける溶接方法とプロセスの合理的な選択は、電池のコスト、品質、安全性、一貫性に直接影響します。 1. レーザー溶接の原理 ファイバーレーザー溶接機は、レーザー光の優れた指向性と高い出力密度を利用して溶接を行います。レーザービームは光学システムを通じて狭い領域に集束され、非常に短時間で溶接領域に高濃度の熱源が形成されます。溶接対象物が溶けて強固な溶接点と溶接シームを形成します。 2. レーザー溶接タイプ 熱伝導溶接と深溶け込み溶接 レーザー熱伝導溶接の場合はレーザーパワー密度105~106w/㎝²、レーザー深溶け込み溶接の場合はレーザーパワー密度105~106w/ ㎝²です。 貫通溶接とシーム溶接 貫通溶接のため接続部に打ち抜き加工が不要で、加工が比較的簡単です。貫通溶接には、より強力なレーザー溶接機が必要...
続きを読む
-
リチウム電池スポット溶接機の利点と欠点は何ですか?
Jul 17 , 2024
リチウム電池スポット溶接機の利点と欠点は何ですか? 18650 バッテリー パックの組み立て工程では、スポット溶接機が一般的に使用されます。スポット溶接機は、ニッケル ストリップをバッテリー セルに溶接し、それらを直列または並列に接続するために使用されます。 18650 パックの溶接には、バッテリー パックの組み立て用に特別に設計されたスポット溶接機を使用できます。これらの機械には、溶接パラメータの正確な制御や、バッテリー タブの溶接に必要な高電流を処理する機能など、リチウムイオン バッテリー セルの溶接に適した機能が備わっています。バッテリー セルを損傷することなく適切な溶接を確実に行うには、溶接パラメータを調整できる機械を使用することをお勧めします。また、18650 パックのサイズと構成に対応できる機械を選択してください。 バッテリーパックの組み立てにスポット溶接機を使用する利点: 速...
続きを読む
-
バッテリーパック組立工程シリーズ2 - モジュールの積層と押し出し
May 21 , 2025
バッテリーパック組立工程シリーズ2 - モジュールの積層と押し出し 1. モジュールスタッキングの主要ステップ モジュール組立とは、複数のセルを所定の設計と構造に従って組み合わせ、特定の機能と性能を備えたバッテリーモジュールを形成するプロセスです。このプロセスでは、セルを様々な接続方法(溶接、機械的固定など)でしっかりと一体化し、さらにヒートシールドや絶縁シートなどの補助材料を追加することで、モジュールの優れた電気性能、熱管理、安全性を確保します。 1.1 モジュールのスタッキング 操作目的: セル間の電気的接続と機械的安定性を確保しながら、セルを正しい直並列配置で組み合わせます。 一般的に、リチウムイオンセルの負極には銅金属が、正極にはアルミニウム金属が使用されています。モジュール内のセルの配置は、バッテリーパックに必要な電圧と容量に応じて設計されます。 例えば、ある蓄電パックの必要容量...
続きを読む